81 research outputs found

    Direct detection of shigella in stool specimens by use of a metagenomic approach

    Get PDF
    The underestimation of Shigella species as a cause of childhood diarrhea disease has become increasingly apparent with quantitative PCR (qPCR)-based diagnostic methods versus culture. We sought to confirm qPCR-based detection of Shigella via a metagenomics approach. Three groups of samples were selected from diarrheal cases from the Global Enteric Multicenter Study: nine Shigella culture-positive and qPCR-positive (culture+ qPCR+) samples, nine culture-negative but qPCR-positive (culture- qPCR+) samples, and nine culture-negative and qPCR-negative (culture- qPCR-) samples. Fecal DNA was sequenced using paired-end Illumina HiSeq, whereby 3.26 × 108 ± 5.6 × 107 high-quality reads were generated for each sample. We used Kraken software to compare the read counts specific to Shigella among the three groups. The proportions of Shigella-specific nonhuman sequence reads between culture+ qPCR+ (0.65 ± 0.42%) and culture- qPCR+ (0.55 ± 0.31%) samples were similar (Mann-Whitney U test, P = 0.627) and distinct from the culture- qPCR- group (0.17 ± 0.15%, P \u3c 0.05). The read counts of sequences previously targeted by Shigella/enteroinvasive Escherichia coli (EIEC) qPCR assays, namely, ipaH, virA, virG, ial, ShET2, and ipaH3, were also similar between the culture+ qPCR+ and culture- qPCR+ groups and distinct from the culture- qPCR- groups (P \u3c 0.001). Kraken performed well versus other methods: its precision and recall of Shigella were excellent at the genus level but variable at the species level. In summary, metagenomic sequencing indicates that Shigella/EIEC qPCR-positive samples are similar to those of Shigella culture-positive samples in Shigella sequence composition, thus supporting qPCR as an accurate method for detecting Shigella

    Meningococcal carriage within households in the African meningitis belt: A longitudinal pilot study.

    Get PDF
    OBJECTIVES: Carriers of Neisseria meningitidis are a key source of transmission. In the African meningitis belt, where risk of meningococcal disease is highest, a greater understanding of meningococcal carriage dynamics is needed. METHODS: We randomly selected an age-stratified sample of 400 residents from 116 households in Bamako, Mali, and collected pharyngeal swabs in May 2010. A month later, we enrolled all 202 residents of 20 of these households (6 with known carriers) and collected swabs monthly for 6 months prior to MenAfriVac vaccine introduction and returned 10 months later to collect swabs monthly for 3 months. We used standard bacteriological methods to identify N. meningitidis carriers and fit hidden Markov models to assess acquisition and clearance overall and by sex and age. RESULTS: During the cross-sectional study 5.0% of individuals (20/400) were carriers. During the longitudinal study, 73 carriage events were identified from 1422 swabs analyzed, and 16.3% of individuals (33/202) were identified as carriers at least once. The majority of isolates were non-groupable; no serogroup A carriers were identified. CONCLUSIONS: Our results suggest that the duration of carriage with any N. meningitidis averages 2.9 months and that males and children acquire and lose carriage more frequently in an urban setting in Mali. Our study informed the design of a larger study implemented in seven countries of the African meningitis belt

    Bacterial Factors Associated with Lethal Outcome of Enteropathogenic Escherichia coli Infection: Genomic Case-Control Studies.

    Get PDF
    BACKGROUND: Typical enteropathogenic Escherichia coli (tEPEC) strains were associated with mortality in the Global Enteric Multicenter Study (GEMS). Genetic differences in tEPEC strains could underlie some of the variability in clinical outcome. METHODS: We produced draft genome sequences of all available tEPEC strains from GEMS lethal infections (LIs) and of closely matched EPEC strains from GEMS subjects with non-lethal symptomatic infections (NSIs) and asymptomatic infections (AIs) to identify gene clusters (potential protein encoding sequences sharing ≥90% nucleotide sequence identity) associated with lethality. RESULTS: Among 14,412 gene clusters identified, the presence or absence of 392 was associated with clinical outcome. As expected, more gene clusters were associated with LI versus AI than LI versus NSI. The gene clusters more prevalent in strains from LI than those from NSI and AI included those encoding proteins involved in O-antigen biogenesis, while clusters encoding type 3 secretion effectors EspJ and OspB were among those more prevalent in strains from non-lethal infections. One gene cluster encoding a variant of an NleG ubiquitin ligase was associated with LI versus AI, while two other nleG clusters had the opposite association. Similar associations were found for two nleG gene clusters in an additional, larger sample of NSI and AI GEMS strains. CONCLUSIONS: Particular genes are associated with lethal tEPEC infections. Further study of these factors holds potential to unravel the mechanisms underlying severe disease and to prevent adverse outcomes

    Microbiota that affect risk for shigellosis in children in low-income countries

    Get PDF
    Pathogens in the gastrointestinal tract exist within a vast population of microbes. We examined associations between pathogens and composition of gut microbiota as they relate to Shigella spp./enteroinvasive Escherichia coli infection. We analyzed 3,035 stool specimens (1,735 nondiarrheal and 1,300 moderate-to-severe diarrheal) from the Global Enteric Multicenter Study for 9 enteropathogens. Diarrheal specimens had a higher number of enteropathogens (diarrheal mean 1.4, nondiarrheal mean 0.95; p<0.0001). Rotavirus showed a negative association with Shigella spp. in cases of diarrhea (odds ratio 0.31, 95% CI 0.17–0.55) and had a large combined effect on moderate-to-severe diarrhea (odds ratio 29, 95% CI 3.8–220). In 4 Lactobacillus taxa identified by 16S rRNA gene sequencing, the association between pathogen and disease was decreased, which is consistent with the possibility that Lactobacillus spp. are protective against Shigella spp.–induced diarrhea. Bacterial diversity of gut microbiota was associated with diarrhea status, not high levels of the Shigella spp. ipaH gene.publishedVersio

    Pharyngeal carriage of Neisseria species in the African meningitis belt.

    Get PDF
    OBJECTIVES: Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS: Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. RESULTS: A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8-10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. CONCLUSION: Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt

    Impact of the addition of azithromycin to antimalarials used for seasonal malaria chemoprevention on antimicrobial resistance of Streptococcus pneumoniae.

    Get PDF
    OBJECTIVE: A trial was conducted in Burkina Faso and Mali to investigate whether addition of azithromycin to the antimalarials used for seasonal malaria chemoprevention reduces mortality and hospital admissions of children. We tested the sensitivity of nasal isolates of Streptococcus pneumoniae obtained during this trial to azithromycin and other antibiotics. METHODS: Azithromycin or placebo was administered monthly, in combination with the antimalarials used for seasonal malaria chemoprevention, for four months, over the annual malaria transmission seasons of 2014, 2015, and 2016. Nasopharyngeal swabs were collected from 2773 Burkinabe and 2709 Malian children on seven occasions: in July and December each year prior to and after drug administration, and at a final survey in early 2018. Pneumococci were isolated from nasopharyngeal swabs and tested for sensitivity to azithromycin and other antibiotics. RESULTS: A total of 5482 samples were collected. In Burkina Faso, the percentage of pneumococcal isolates resistant to azithromycin among children who had received it increased from 4.9% (95% CI: 2.4%, 9.9%) before the intervention to 25.6% (95% CI: 17.6%, 35.7%) afterward. In Mali, the increase was from 7.6% (95% CI: 3.8%, 14.4%) to 68.5% (95% CI: 55.1%, 79.4%). The percentage of resistant isolates remained elevated (17.7% (95% CI: 11.1%, 27.1%) in Burkina Faso and 19.1% (95% CI: 13.5%, 26.3%) in Mali) among children who had received azithromycin 1 year after stopping the intervention. An increase in resistance to azithromycin was also observed in children who had received a placebo but it was less marked. CONCLUSION: Addition of azithromycin to the antimalarial combination used for seasonal malaria chemoprevention was associated with an increase in resistance of pneumococci to azithromycin and erythromycin, which persisted 1 year after the last administration of azithromycin

    Evaluation of Pneumococcal Load in Blood by Polymerase Chain Reaction for the Diagnosis of Pneumococcal Pneumonia in Young Children in the PERCH Study.

    Get PDF
    BACKGROUND.: Detection of pneumococcus by lytA polymerase chain reaction (PCR) in blood had poor diagnostic accuracy for diagnosing pneumococcal pneumonia in children in 9 African and Asian sites. We assessed the value of blood lytA quantification in diagnosing pneumococcal pneumonia. METHODS.: The Pneumonia Etiology Research for Child Health (PERCH) case-control study tested whole blood by PCR for pneumococcus in children aged 1-59 months hospitalized with signs of pneumonia and in age-frequency matched community controls. The distribution of load among PCR-positive participants was compared between microbiologically confirmed pneumococcal pneumonia (MCPP) cases, cases confirmed for nonpneumococcal pathogens, nonconfirmed cases, and controls. Receiver operating characteristic analyses determined the "optimal threshold" that distinguished MCPP cases from controls. RESULTS.: Load was available for 290 of 291 cases with pneumococcal PCR detected in blood and 273 of 273 controls. Load was higher in MCPP cases than controls (median, 4.0 × 103 vs 0.19 × 103 copies/mL), but overlapped substantially (range, 0.16-989.9 × 103 copies/mL and 0.01-551.9 × 103 copies/mL, respectively). The proportion with high load (≥2.2 log10 copies/mL) was 62.5% among MCPP cases, 4.3% among nonconfirmed cases, 9.3% among cases confirmed for a nonpneumococcal pathogen, and 3.1% among controls. Pneumococcal load in blood was not associated with respiratory tract illness in controls (P = .32). High blood pneumococcal load was associated with alveolar consolidation on chest radiograph in nonconfirmed cases, and with high (>6.9 log10 copies/mL) nasopharyngeal/oropharyngeal load and C-reactive protein ≥40 mg/L (both P < .01) in nonconfirmed cases but not controls. CONCLUSIONS.: Quantitative pneumococcal PCR in blood has limited diagnostic utility for identifying pneumococcal pneumonia in individual children, but may be informative in epidemiological studies

    Standardization of Laboratory Methods for the PERCH Study.

    Get PDF
    The Pneumonia Etiology Research for Child Health study was conducted across 7 diverse research sites and relied on standardized clinical and laboratory methods for the accurate and meaningful interpretation of pneumonia etiology data. Blood, respiratory specimens, and urine were collected from children aged 1-59 months hospitalized with severe or very severe pneumonia and community controls of the same age without severe pneumonia and were tested with an extensive array of laboratory diagnostic tests. A standardized testing algorithm and standard operating procedures were applied across all study sites. Site laboratories received uniform training, equipment, and reagents for core testing methods. Standardization was further assured by routine teleconferences, in-person meetings, site monitoring visits, and internal and external quality assurance testing. Targeted confirmatory testing and testing by specialized assays were done at a central reference laboratory

    The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia.

    Get PDF
    BACKGROUND.: Antibiotic exposure and specimen volume are known to affect pathogen detection by culture. Here we assess their effects on bacterial pathogen detection by both culture and polymerase chain reaction (PCR) in children. METHODS.: PERCH (Pneumonia Etiology Research for Child Health) is a case-control study of pneumonia in children aged 1-59 months investigating pathogens in blood, nasopharyngeal/oropharyngeal (NP/OP) swabs, and induced sputum by culture and PCR. Antibiotic exposure was ascertained by serum bioassay, and for cases, by a record of antibiotic treatment prior to specimen collection. Inoculated blood culture bottles were weighed to estimate volume. RESULTS.: Antibiotic exposure ranged by specimen type from 43.5% to 81.7% in 4223 cases and was detected in 2.3% of 4863 controls. Antibiotics were associated with a 45% reduction in blood culture yield and approximately 20% reduction in yield from induced sputum culture. Reduction in yield of Streptococcus pneumoniae from NP culture was approximately 30% in cases and approximately 32% in controls. Several bacteria had significant but marginal reductions (by 5%-7%) in detection by PCR in NP/OP swabs from both cases and controls, with the exception of S. pneumoniae in exposed controls, which was detected 25% less frequently compared to nonexposed controls. Bacterial detection in induced sputum by PCR decreased 7% for exposed compared to nonexposed cases. For every additional 1 mL of blood culture specimen collected, microbial yield increased 0.51% (95% confidence interval, 0.47%-0.54%), from 2% when volume was ≤1 mL to approximately 6% for ≥3 mL. CONCLUSIONS.: Antibiotic exposure and blood culture volume affect detection of bacterial pathogens in children with pneumonia and should be accounted for in studies of etiology and in clinical management
    corecore